Seed storage and the relative effects of temperature, moisture and oxygen

ISTA Annual meeting 2024, Seminar 'Seed quality assurance a critical component of food and nutritional security' - Cambridge

Steven P.C. Groot

Seed longevity varies with storage

Thailand rice seed warehouse \pm 80% RH, \pm 30 °C

NL seed company warehouse 30% RH, 20 °C

Genebank storage 15% RH, -20 °C

Seed moisture content

<u>Storage</u> temperature

Dry seed storage for food and farming

SEED ACADEMY

Deterioration during seed ageing

• DNA damage,

WAGENINGEN

- Protein oxidation,
- Lipid peroxidation
- Cell membrane damage
- Mitochondrial memorane damage

Oxygen uptake by dry seeds

10 g lettuce seeds (approx. 18 ml) after equilibration at 39% RH
 Stored in closed 47 ml glass jar at 20 °C (dark)

Can storage under anoxia improve shelf life?

The food industry packs seeds under anoxia

Can seeds survive longer under anoxia?

Roberts E.H. (1961) Ann Bot 25, 381-390.

The Viability of Rice Seed in relation to Temperature, Moisture Content, and Gaseous Environment

BY

E. H. ROBERTS

West African Rice Research Station, Rokupr, Sierra Leone

With three Figures in the Text

Abstract

The seed viability of a tropical variety of rice has been investigated in hermetic storage under a range of conditions of temperature and moisture content. The results confirm a previous suggestion, which was made on the basis of data from temperate cereals, that the relationship between these factors and viability can be described in simple mathematical terms. In addition, a comparison has been made of the effects on viability of hermetic storage in air, oxygen, nitrogen, and carbon dioxide.

Effect of different storage atmospheres

100

FIG. 3. Loss of viability of seed of Toma 112 hermetically sealed in various gases: nitrogen (-----), air (----), oxygen (-----), carbon dioxide ($\blacksquare \bullet -----$). Storage temperatures: 32° C. (\triangle), 37° C. (O), 42° C. (\square), 47° C. (+).

8

Effect of different oxygen concentrations

Schwember and Bradford 2011. Seed Science Research 21: 175-185

Effect of different oxygen concentrations

Schwember and Bradford 2011. Seed Science Research 21: 175-185

Factors affecting longevity in storage:

Seed moisture content

Storage temperature

Storage atmosphere

What is the <u>quantitative</u> effect of oxygen?

What is the relative effect of oxygen levels compared to temperature?

- Project funded by government of the Netherlands and the seed companies Rijk Zwaan and Bejo
- Storage experiments lasted seven years

What is the <u>quantitative</u> effect of oxygen?

- Seeds with a short shelf life were used: primed celery seeds
- Controlled storage conditions :
- Stable relative humidity in the container using buffering silica gel
- Stable temperature conditions using incubators
- Stable oxygen levels by flushing with mixtures of air, oxygen and nitrogen gas

Results primed celery seeds at 33% eRH

14

Effect oxygen on shelf life at 33% and 20°C

Results primed celery seeds at 20°C

Relation oxygen and storage RH

Relation oxygen and storage temperature

Relation oxygen and storage humidity

■ 5°C
 ▲ 13°C
 ● 20°C
 ★ 30°C

Quantitative model

 $v = K_i - p/10^{C_0 - C_1 TEMP - C_2 logOXY}$

- For temperatures 5 30 °C and RH levels 16-43%:
 C1 = 1.8 and C2 = 1.7
- Shelf life extends by a factor 1.8 each time the oxygen concentration is halved

Oxygen 21% -> 3% gives 5 times longer shelf life

- Oxygen 21% -> 1% gives 13 times longer shelf life
- Shelf life extends by a factor 1.7 each time the temperature drops by 5°C
 - Temperature 30 °C -> 15°C gives 5 times longer shelf life
 - Temperature 30 °C -> 5°C gives 15 times longer shelf life
- Oxygen and temperature effects are additive

How to store seeds under anoxia or low oxygen levels?

- Vacuum packaging
- Use of oxygen absorbers (iron powder)
- Nitrogen gas flushing

How to store seeds under anoxia or low oxygen levels

The container should be moisture proof and air (oxygen) tight!

Oxygen interaction with Relative Humidity

Oxygen interaction with Relative Humidity

Anoxia does extend shelf life at 45 °C and 9 or 33% RH but not at 64 or 85% RH

Oxygen interaction with Relative Humidity

Source: Gerna et al (2022) J of Exp Bot. 73(8), 2631-2649

Conclusions

- Dry seeds to maximum in equilibrium with 50% RH, preferably to 30 or even 20% RH
- Storage at lower temperature extends shelf life with a factor of 1.7 each time temperature is 5° cooler
 - Cooled warehouses are expensive to build and run
- Storage with reduced oxygen levels extends shelf life with a factor 1.8 each time oxygen levels are halved
 - Reducing oxygen levels needs cheap till expensive equipment, depending on the volume
- Store hermetically to avoid uptake of moisture and oxygen
- For genebank storage a combination is recommended

Questions?

© Wageningen UR

Contact

Steven P.C. Groot

International Seed Academy

- E-mail: steven@seedacademy.org
- Websites: <u>https://seedacademy.org</u>

www.researchgate.net/profile/Steven Groot/

