

Developments in Multispectral Imaging and Image Analysis on seeds

Birte Boelt, ATC
Aarhus University
Denmark

Developments in research

Seed health
Seed germination and vigour
Other seed determination and purity

The electromagnetic spectrum

RGB, multispectral, hyperspectral

Seed health in Spinach Seed by multispectral imaging

Verticillium

Our first presentation on multispectral imaging during the ISTA congress in Cologne, 2010

Seed Science and <u>Technology</u> Olesen et al., 2011

Recent publications - seed health

Scientia Horticulturae 321 (2023) 112219

Contents lists available at ScienceDirect

Scientia Horticulturae

journal homepage: www.elsevier.com/locate/scihorti

Higher seed maturity levels, darker pericarp, and smaller seed size relate to improved damping-off tolerance in spinach

Kim J.H. Magnée ^{a,b}, Olga E. Scholten ^a, Jan Kodde ^a, Joeke Postma ^a, Gerrit Gort ^c, Edith T. Lammerts van Bueren a. Steven P.C. Groot a.

- ^a Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands
- b Certis Belchim B.V., P.O. Box 607, 3500 AP, Utrecht, the Netherlands
- ^c Biometris, Wageningen University & Research, P.O. Box 16, 6700 HB, Wageningen, the Netherlands

scientific reports

TYPE Original Research

PUBLISHED 22 February 2023

DOI 10.3389/fpls.2023.1112916

OPEN Fluorescence spectroscopy and multispectral imaging for fingerprinting of aflatoxin-B₁ contaminated (Zea mays L.) seeds: a preliminary study

> Dragana Bartolić¹, Dragosav Mutavdžić¹, Jens Michael Carstensen², Slavica Stanković³, Milica Nikolić³, Saša Krstović⁴ & Ksenija Radotić¹™

> > University of Belgrade, Serbia 2022

https://doi.org/10.1038/s41598-022-08352-4

Check for updates

Check for updates

OPEN ACCESS

EDITED BY Mansour Ghorbannour Arak University, Iran

REVIEWED BY Belén Diezma, Polytechnic University of Madrid, Spain Alireza Sanaeifar Zhejiang University, China

Clíssia Barboza Mastrangelo ⊠ clissia@usp.br

SPECIALTY SECTION This article was submitted to Technical Advances in Plant Science. a section of the journal Frontiers in Plant Science

Fungal identification in peanuts seeds through multispectral images: Technological advances to enhance sanitary quality

Julia Marconato Sudki¹, Gustavo Roberto Fonseca de Oliveira², André Dantas de Medeiros³, Thiago Mastrangelo¹, Valter Arthur¹, Edvaldo Aparecido Amaral da Silva² and Clíssia Barboza Mastrangelo^{1*}

¹Laboratory of Radiobiology and Environment, Center for Nuclear Energy in Agriculture, University of São Paulo (CENA/USP), Piracicaba, SP, Brazil, ²Department of Crop Science, College of Agricultural Sciences, Faculdade de Ciências Agronômicas (FCA), São Paulo State University (UNESP), Botucati, Brazil, 3Department of Agronomy, Federal University of Viçosa (UFV), Viçosa, Brazil

Seed germination and seed vigour

M.-H. Wagner, A.A. Powell, A. Dupont, T. Shinohara and S. Ducournau (2023). Seed Science and Technology, **51**, 3, 291-296.

https://doi.org/10.15258/sst.2023.51.3.01

Research Note

Radicle emergence test for cabbage can be assessed using multispectral imaging

Marie-Hélène Wagner^{1*}, Alison A. Powell², Audrey Dupont¹, Takashi Shinohara³ and Sylvie Ducournau¹

- ¹ GEVES, Station Nationale d'Essais de Semences, 25 rue G. Morel, 49071 Beaucouzé, France
- ² Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- ³ Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan
- * Author for correspondence (E-mail: marie-helene.wagner@geves.fr)

TYPE Methods
PUBLISHED 18 September 2023
DOI 10.3389/fpls.2023.1194701

ABRATES

Journal of Seed Science

ISSN 2317-1545 www.abrates.org.br/revista

Journal of Seed Science, v.44, e202244023, 2022

http://dx.doi.org/10.1590/ 2317-1545v44258703 Check for updates

OPEN ACCESS

EDITED BY Kioumars Ghamkhar, AgResearch Ltd, New Zealand

REVIEWED BY Jingii Lu, AgResearch Ltd, New Zealand Ruojing Wang, Canadian Food Inspection Agency (CFIA), Canada

*CORRESPONDENCE Yanfang Liu

Vigour testing for the rice seed with computer visionbased techniques

Juxiang Qiao^{1†}, Yun Liao^{2†}, Changsheng Yin³, Xiaohong Yang¹, Hoàng Minh Tú⁴, Wei Wang^{2*} and Yanfang Liu^{1*}

¹Quality Standard and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China, ²Software School, Yunnan University, Kunming, China, ³Seed Management Station of Yunnan Province, Kunming, China, ⁴National Center for Testing and Testing of Plant Seeds and Products. Hanol. Vietnam

ARTICLE

Quantification of chlorophyll fluorescence in soybean seeds by multispectral images and their relationship with physiological potential

Fabiano França-Silva^{1*}, Silvio Moure Cicero¹, Francisco Guilhien Gomes-Junior¹, André Dantas Medeiros², José de Barros França-Neto³, Denise Cunha Fernandes Santos Dias²

SpectraSeed

Bevillingsgiver:

Partnere:

Discriminate spinach and radish seeds

RGB view of radish seeds RGB view of spinach seeds

nCDA transform on multispectral image enhances color contrast between spinach and radish.

Other seeds determination - spinach

Predicted	Cereal	Spinach	Cleavers	Black bindweed	Radish	Rapeseed	Hemp-nettle	Total	Error
Cereal	99.7	0.3	0	0	0	0	0	1.2	0.3
Spinach	0	99.9	0.1	0	0	0	0	75.2	0.1
Cleavers	0	0.4	99.5	0.1	0	0.1	0	7.5	1.5
Black bindweed	0	0.3	0	99.7	0	0	0	10.1	0.4
Radish	0	1.8	0.5	0	97.6	0	0.1	2.6	2.5
Rapeseed	0	0.5	0.9	0	0.4	97.9	0.4	2.3	2.1
Hemp-nettle	0	0.5	0.2	0	0.2	0.9	98.2	0.8	1.8
Total	1.2	75.3	7.5	10.1	2.5	2.2	0.8	57115	
Error	0	0.2	1.6	0.3	0.7	1.2	3.2		0.4

Classifier performance on a test set with 57.115 seeds

2018: Classification 99.9 on spinach and >97% on weed seeds

Current status, 2024: 99.8 – 99.9% on weed seeds

Today the technology actively used in the seed processing line in Vikima seed

Kim Nielsen, Vikima Seed, pers. comm.

ISTA Special Project: New Technologies for Other Seeds Determination, 2023

PT 13-3 Oilseed rape

Lot	Species name	Seeds added		•	crop seed ll (%)	ISTA test Retrieval rate	
		(Net A/B/C)	Net A	Net B	Net C	Avg.	(%)
Lot 1	Galium aparine	4	75	100	50	75	96
	Sinapis arvensis	5/6/6	100	83	100	94	63
	Stellaria media	5	100	100	100	100	89
	Thlapsi arvense	5	40	80	00	40	97
Lot 2	Chenopodium album	4	100	100	100	100	93
	Lactuca sativa	2	100	100	100	100	99
	Phacelia tanacetifolia	3	67	67	67	67	93
	Vaccaria hispanica	3/3/2	О	0	О	О	46
Lot 3	Fallopia convolvulus	2	100	100	100	100	90
	Raphanus sativus	3	100	100	100	100	92
	Rumex crispus	3	100	100	О	67	98
	Sinapis alba	4	100	100	100	100	91

Overall recall / retrieval rate

Summarized comparison between the average recall of Net A-C and the retrieval rate from the ISTA PT-tests across all weed species.

- Row 1: The number of weed species, where the average recall is greater than or equal to the retrieval rate (38)
- Row 2: The number of weed species, where the average recall is greater than or equal to the retrieval rate (24)

	Timothy*		Sunflower	White clover	Perennial ryegrass	Total
Avg. recall ≥ retrieval rate	5	7	10	7	9	38
Avg. recall < retrieval rate	6	5	4	3	6	24

Weeds were not classified to species level

Other seeds determination - classification to species level

- An area with much research and many recent publications
- Concerns weed seeds, agricultural and horticultural crops
- Typicly high accuracies (up to 100%) but based on small sample sizes (training sets < 5.000 seeds) and local models

Mortensen et al., 2021 https://doi.org/10.3390/agriculture11040301

Development in seed industry: PT tests performed (Bayer Crop Science, DLF)

Other seeds determination - classification to species level

- The current research indicates that the potential is there
- To advance further towards robust and global models more work is required

- ISTA can play a role in accommodating a reference library to secure validated, reliable training sets of work samples
- Collaboration between research, ISTA and the seed sector is important to secure progress

Thank you

